

ROS Toolkit Example Page 1 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

Robot Operating System (ROS) has rapidly become one of the premiere architectures for developing new
robotics technology. Its flexibility and community provides an excellent way to quickly integrate new sensors and
share new code. However, it is not suitable to control real-time systems nor is it designed to interface with
measurement and test systems. LabVIEW is uniquely suited to address some of these deficiencies. The
Clearpath Robotics LabVIEW-ROS Toolkit allows the power of LabVIEW hardware and software to be brought to
ROS systems.

The ROS Toolkit establishes an interface between LabVIEW and ROS, allowing communication to be established
as long as a connection can be established between the computer running ROS and the computer running
LabVIEW. This connection can be on the same machine via the localhost interface, or it can be over the internet.

Two general configurations are possible. When the robot is ROS-enabled and LabVIEW is used as a high-level
control system, it allows for the easy creation of GUIs with LabVIEW VIs. When the robot is LabVIEW-enabled
and ROS is used as a high-level control system, LabVIEW and NI hardware can be used for low level real-time
control.

The toolkit fits cleanly into existing LabVIEW and ROS software. On the ROS side, it is only necessary to install
and run the rosbridge node to provide the toolkit with access. Likewise, the various components of the toolkit can

Bridge

Think

Sense Act

GUI VI

LabVIEW

ROS

Bridge

Sense

Act

Think

ROS

LabVIEW

Figure 1: Controlling a ROS-enabled robot Figure 2: Controlling a LabVIEW-enabled robot

http://www.ros.org/
http://www.ros.org/wiki/rosbridge

ROS Toolkit Example Page 2 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

be manipulated like any other LabVIEW sub-VI. For example, the included Joystick Demo program only requires
three toolkit specific blocks; the first to open the connection (1), the second to generate control messages from
standard mathematical operations (2), and the third (3) to close the connection.

Figure 3: Using ROS Toolkit to control a mobile robot

There still remain a few limitations to the software. Namely, if the toolkit is to be deployed on targets running
LabVIEW Real-Time, the blocks which allow for dynamic creation of ROS messages from LabVIEW clusters and
vice-versa will not work.

This toolkit can be explored even if access is not available to a ROS-enabled robot. The ROS ecosystem provides
a number of easy-to-install simulated robots based on the Gazebo simulation environment.

Figure 4: Simulated PR2 robot

ROS Toolkit Example Page 3 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

First, the main ROS programs and some supporting packages must be installed on the computer you have
selected to run ROS. Though ROS is tentatively supported on a number of platforms, using Ubuntu 10.04-11.10 is
advised at the present time.

1. Follow the installation instructions for ROS Electric and your particular platform.
2. Install the "rosbridge" package via:

sudo apt-get install ros-electric-brown-remotelab
3. Install the TurtleBot simulator with:

sudo apt-get install ros-electric-turtlebot-simulator-desktop
4. At this point, open a terminal window and start the simulator by running:

 roslaunch turtlebot_gazebo turtlebot_empty_world.launch

Figure 5: Gazebo simulation of a TurtleBot

5. With the TurtleBot simulation running, use rosbridge to allow LabVIEW to connect. Open a third terminal
and run:

 rosrun rosbridge rosbridge.py
6. Finally, open a fourth terminal on the ROS computer and use ifconfig to determine the computer's IP.
7. On the LabVIEW computer, verify that you can access the simulation computer by using ping.
8. Load the Joystick Demo from the Example Finder.

http://www.ros.org/wiki/electric/Installation

ROS Toolkit Example Page 4 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

Figure 6: ROS Toolkit Examples

9. Plug a joystick into the LabVIEW computer.
10. Enter in the IP of the ROS computer that was found in Step #6, and run the demo.

Figure 7: Joystick Control Demo

11. Depress Button #1 on the joystick and begin driving your simulated robot!
If you would like to examine the ROS commands that the toolkit is generating, open a terminal on the ROS
computer and type:
 rostopic echo /cmd_vel

ROS Toolkit Example Page 5 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

The easiest ROS-enabled robot to work with is the TurtleBot educational platform. The computer comes with ROS
installed and tested, so no additional modifications are necessary. To drive this robot from LabVIEW, only one
extra software package is required.

Figure 8: TurtleBot

1. Install the "rosbridge" package on the TurtleBot netbook via:
sudo apt-get install ros-electric-brown-remotelab

2. Since ROS starts up automatically on the TurtleBot, all that is necessary to allow LabVIEW to connect is
to use rosbridge. Open a terminal on the TurtleBot netbook and run:

 rosrun rosbridge rosbridge.py
3. Open a second terminal on the TurtleBot netbook and use ifconfig to determine the netbook's IP.

The remaining steps are identical to those used to control a simulated robot. Since both the simulated TurtleBot
and the real TurtleBot subscribe to ROS Twist messages, the only thing that needs to be changed in the Joystick
Demo VI is the IP which the LabVIEW computer is targeting.

4. On the LabVIEW computer, verify that you can access the simulation computer by using ping.
5. Load the Joystick Demo from the Example Finder.
6. Plug a joystick into the LabVIEW computer.
7. Enter in the IP of the ROS computer that was found in Step #6, and run the demo.
8. Depress Button #1 on the joystick and begin driving your TurtleBot!

http://www.clearpathrobotics.com/turtlebot
http://ros.org/doc/api/geometry_msgs/html/msg/Twist.html

ROS Toolkit Example Page 6 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

Using ROS to control LabVIEW-powered systems is also done in a similar way. A Husky A200 UGV was outfitted
with a custom-built robotic manipulator. Due to the real-time control requirements of this manipulator and
multitude of I/O, it was built around a sbRIO-9606.

Figure 9: Husky A200 equipped with custom manipulator

The ROS Toolkit was deployed on the sbRIO-9606 to allow controls development to be conducted in LabVIEW
and the overall planning software to be built with ROS. This is an excellent demonstration of the complimentary
power of the hardware; high-bandwidth control can be done by the sbRIO while ROS provides a multitude of
drivers and supporting software specific for autonomous systems.

http://www.clearpathrobotics.com/husky

ROS Toolkit Example Page 7 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

The toolkit supports both generation and parsing of arbitrary ROS messages. For example, a cluster can be
created with the same structure as a given ROS message. When a reference to this cluster along with input data
from the "ROS Read" VI is passed into the "JSON to Cluster Recurse" VI, the cluster will be populated with data
from the incoming ROS message.

Figure 11: Parsing a user-created TurtlebotSensorState message

Likewise, passing a cluster reference, topic name, and topic type to the "ROS Send Generic" VI will dynamically
create and transmit a matching ROS message on the specified topic. Due to restrictions in LabVIEW RT, neither
the dynamic parsing nor the dynamic generation features will work when deployed to real-time targets.

Bridge

sbRIO-9606
LabVIEW RT

Kinect

Arm Hardware

Husky A200 ROS

IMU

Figure 10: Architecture of a Mobile Manipulator

ROS Toolkit Example Page 8 of 8

© 2012 Clearpath Robotics, Inc. CONFIDENTIAL 23 June 2012

There are many tutorials available for ROS, as well as a set provided specifically for the TurtleBot. As well,
several basic debugging tools are made available at the command line. They are all prefixed with ros and most
have descriptive names.

For example, rosnode provides information about currently running nodes. rosnode list will list them, and
rosnode info <NODE> will provide information about the specified node. Likewise, rostopic exposes details
about current topics. rostopic list will list the current topics being published, and rostopic echo <TOPIC> will
display the latest data being sent on the named topic.

Please contact support@clearpathrobotics.com with questions, suggestions, or if specific message types are
required.

